Steps in PD Credit Scorecard Model Development
Step 1: Understanding the business problem
Step 2: Defining the dependent variable and understanding the relevant independent variables
Step 3: Pulling the data (dependent and independent variables) from databases
Step 4: Data cleaning and segmentation
Step 5: Sampling and model methodology selection
Step 6: Data preparation
A) Determining exclusion criterion for observation periods
B) Determining exclusion criterion for performance periods
C) Outlier treatment
D) Missing value analysis
E) Univariate data analysis
F) Bi-variate data analysis
G) Binning and Transformation of variables
Step 7: Model building
A) Variable selection or reduction
B) Multicollinearity check
C) Parameter estimation
D) Score generation
Step 8: Model validation
A) Assessing model discrimination/separation power
B) Assessing model calibration power or goodness-of-fit
Step 9: Model implementation
Step 10: Periodical model monitoring and model recalibration (if required)
Step 1: Understanding the business problem
Step 2: Defining the dependent variable and understanding the relevant independent variables
Step 3: Pulling the data (dependent and independent variables) from databases
Step 4: Data cleaning and segmentation
Step 5: Sampling and model methodology selection
Step 6: Data preparation
A) Determining exclusion criterion for observation periods
B) Determining exclusion criterion for performance periods
C) Outlier treatment
D) Missing value analysis
E) Univariate data analysis
F) Bi-variate data analysis
G) Binning and Transformation of variables
Step 7: Model building
A) Variable selection or reduction
B) Multicollinearity check
C) Parameter estimation
D) Score generation
Step 8: Model validation
A) Assessing model discrimination/separation power
B) Assessing model calibration power or goodness-of-fit
Step 9: Model implementation
Step 10: Periodical model monitoring and model recalibration (if required)
No comments:
Post a Comment